Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Methods Mol Biol ; 2793: 131-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526728

RESUMO

Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.


Assuntos
Inovirus , Nanotubos , Bacteriófago M13/metabolismo , Ouro/química , Técnicas de Visualização da Superfície Celular/métodos
2.
Biochem Biophys Res Commun ; 703: 149658, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38387229

RESUMO

Adaptor proteins play a pivotal role in cellular signaling mediating a multitude of protein-protein interaction critical for cellular homeostasis. Dysregulation of these interactions has been linked to the onset of various cancer pathologies and exploited by viral pathogens during host cell takeover. CrkL is an adaptor protein composed of an N-terminal SH2 domain followed by two SH3 domains that mediate interactions with diverse partners through the recognition of specific binding motifs. In this study, we employed proteomic peptide-phage display (ProP-PD) to comprehensively explore the short linear motif (SLiM)-based interactions of CrkL. Furthermore, we scrutinized how the binding affinity for selected peptides was influenced in the context of the full-length CrkL versus the isolated N-SH3 domain. Importantly, our results provided insights into SLiM-binding sites within previously reported interactors, as well as revealing novel human and viral ligands, expanding our understanding of the interactions mediated by CrkL and highlighting the significance of SLiM-based interactions in mediating adaptor protein function, with implications for cancer and viral pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Técnicas de Visualização da Superfície Celular , Mapeamento de Interação de Proteínas , Humanos , Sítios de Ligação , Neoplasias , Peptídeos , Ligação Proteica , Proteômica/métodos , Domínios de Homologia de src/fisiologia , Técnicas de Visualização da Superfície Celular/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
N Biotechnol ; 80: 56-68, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354946

RESUMO

Antibody phage-display technology identifies antibody-antigen interactions through multiple panning rounds, but traditional screening gives no information on enrichment or diversity throughout the process. This results in the loss of valuable binders. Next Generation Sequencing can overcome this problem. We introduce a high accuracy long-read sequencing method based on the recent Oxford Nanopore Technologies (ONT) Q20 + chemistry in combination with dual unique molecular identifiers (UMIs) and an optimized bioinformatic analysis pipeline to monitor the selections. We identified binders from two single-domain antibody libraries selected against a model protein. Traditional colony-picking was compared with our ONT-UMI method. ONT-UMI enabled monitoring of diversity and enrichment before and after each selection round. By combining phage antibody selections with ONT-UMIs, deep mining of output selections is possible. The approach provides an alternative to traditional screening, enabling diversity quantification after each selection round and rare binder recovery, even when the dominating binder was > 99% abundant. Moreover, it can give insights on binding motifs for further affinity maturation and specificity optimizations. Our results demonstrate a platform for future data guided selection strategies.


Assuntos
Bacteriófagos , Nanoporos , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos , Tecnologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Front Immunol ; 14: 1192385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818363

RESUMO

Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.


Assuntos
Antígenos Virais , Antígenos , Mapeamento de Epitopos/métodos , Epitopos , Técnicas de Visualização da Superfície Celular/métodos
5.
Methods Mol Biol ; 2681: 47-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405642

RESUMO

Since its development in the 1980s, the Nobel Prize-awarded phage display technology has been one of the most commonly used in vitro selection technologies for the discovery of therapeutic and diagnostic antibodies. Besides the importance of selection strategy, one key component of the successful isolation of highly specific recombinant antibodies is the construction of high-quality phage display libraries. However, previous cloning protocols relied on a tedious multistep process with subsequent cloning steps for the introduction of first heavy and then light chain variable genetic antibody fragments (VH and VL). This resulted in reduced cloning efficiency, higher frequency of missing VH or VL sequences, as well as truncated antibody fragments. With the emergence of Golden Gate Cloning (GGC) for the generation of antibody libraries, the possibility of more facile library cloning has arisen. Here, we describe a streamlined one-step GGC strategy for the generation of camelid heavy chain only variable phage display libraries as well as the simultaneous introduction of heavy chain and light chain variable regions from the chicken into a scFv phage display vector.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular/métodos , Proteínas Recombinantes/genética , Cadeias Leves de Imunoglobulina/genética , Anticorpos/genética , Bacteriófagos/genética , Fragmentos de Imunoglobulinas/genética , Anticorpos de Cadeia Única/genética , Clonagem Molecular
6.
Methods Mol Biol ; 2681: 399-406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405661

RESUMO

Deep sequence-coupled biopanning (DSCB) is a powerful tool that couples affinity selection of a bacteriophage MS2 virus-like particle peptide display platform with deep sequencing. While this approach has been used successfully to investigate pathogen-specific antibody responses in human sera, data analysis is time-consuming and complicated. Here, we describe a streamlined data analysis method for DSCB using MATLAB, expanding the potential for this approach to be deployed rapidly and consistently.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bioprospecção/métodos , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos/sangue , Formação de Anticorpos
7.
Nucleic Acids Res ; 51(13): 6566-6577, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293959

RESUMO

Using an amber suppression-based noncanonical amino acid (ncAA) mutagenesis approach, the chemical space in phage display can be significantly expanded for drug discovery. In this work, we demonstrate the development of a novel helper phage, CMa13ile40, for continuous enrichment of amber obligate phage clones and efficient production of ncAA-containing phages. CMa13ile40 was constructed by insertion of a Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/PylT gene cassette into a helper phage genome. The novel helper phage allowed for a continuous amber codon enrichment strategy for two different libraries and demonstrated a 100-fold increase in packaging selectivity. CMa13ile40 was then used to create two peptide libraries containing separate ncAAs, Nϵ-tert-butoxycarbonyl-lysine and Nϵ-allyloxycarbonyl-lysine, respectively. These libraries were used to identify peptide ligands that bind to the extracellular domain of ZNRF3. Each selection showed differential enrichment of unique sequences dependent upon the ncAA used. Peptides from both selections were confirmed to have low micromolar affinity for ZNRF3 that was dependent upon the presence of the ncAA used for selection. Our results demonstrate that ncAAs in phages provide unique interactions for identification of unique peptides. As an effective tool for phage display, we believe that CMa13ile40 can be broadly applied to a wide variety of applications.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Bacteriófagos , Técnicas de Visualização da Superfície Celular , Aminoácidos/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular/métodos , Peptídeos/metabolismo , Descoberta de Drogas
8.
ACS Chem Biol ; 18(4): 905-914, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37039514

RESUMO

There are a wealth of proteins involved in disease that cannot be targeted by current therapeutics because they are inside cells, inaccessible to most macromolecules, and lack small-molecule binding pockets. Stapled peptides, where two amino acids are covalently linked, form a class of macrocycles that have the potential to penetrate cell membranes and disrupt intracellular protein-protein interactions. However, their discovery relies on solid-phase synthesis, greatly limiting queries into their complex design space involving amino acid sequence, staple location, and staple chemistry. Here, we use stabilized peptide engineering by Escherichia coli display (SPEED), which utilizes noncanonical amino acids and click chemistry for stabilization, to rapidly screen staple location and linker structure to accelerate peptide design. After using SPEED to confirm hotspots in the mdm2-p53 interaction, we evaluated different staple locations and staple chemistry to identify several novel nanomolar and sub-nanomolar antagonists. Next, we evaluated SPEED in the B cell lymphoma 2 (Bcl-2) protein family, which is responsible for regulating apoptosis. We report that novel staple locations modified in the context of BIM, a high affinity but nonspecific naturally occurring peptide, improve its specificity against the highly homologous proteins in the Bcl-2 family. These compounds demonstrate the importance of screening linker location and chemistry in identifying high affinity and specific peptide antagonists. Therefore, SPEED can be used as a versatile platform to evaluate multiple design criteria for stabilized peptide engineering.


Assuntos
Técnicas de Visualização da Superfície Celular , Peptídeos , Proteínas Proto-Oncogênicas c-bcl-2 , Sequência de Aminoácidos , Aminoácidos/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Escherichia coli
9.
J Mol Biol ; 435(10): 168085, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019174

RESUMO

Monoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display. This method combines a previously reported method for improved whole-cell phage display selections with next-generation sequencing analysis to efficiently identify mAbs with the desired target cell reactivity. Applying this method to multiple myeloma cells yielded a panel of >50 mAbs with unique sequences and diverse reactivities. To uncover the identities of the cognate antigens recognized by this panel, representative mAbs from each unique reactivity cluster were used in a multi-omic target deconvolution approach. From this, we identified and validated three cell surface antigens: PTPRG, ICAM1, and CADM1. PTPRG and CADM1 remain largely unstudied in the context of multiple myeloma, which could warrant further investigation into their potential as therapeutic targets. These results highlight the utility of optimized whole-cell phage display selection methods and could motivate further interest in target-unbiased antibody discovery workflows.


Assuntos
Anticorpos Monoclonais , Antígenos , Biblioteca de Peptídeos , Humanos , Especificidade de Anticorpos , Molécula 1 de Adesão Celular , Técnicas de Visualização da Superfície Celular/métodos , Multiômica , Mieloma Múltiplo/genética
10.
Sci Rep ; 13(1): 2116, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746976

RESUMO

The majority of the vitamin D that is present in the blood binds to vitamin D binding protein (VDBP) and circulates in the form of a complex (VDBP-Complex). Knowing the level of vitamin D in the body is crucial for vitamin D-related treatments so that the right dosage of vitamin D can be given. In other words, it is essential to distinguish between the protein VDBP and the complex form bound to vitamin D. As a novel way for the detection of VDBP-Complex, a more effective phage display methodology was applied in this study along with the addition of two approaches. In order to screen a sequence specific to the target only, the pre-binding method and after-binding method were performed. VDBP-Complex was directly coated on the petri dishes. In order to select phages that specifically bind to the VDBP-Complex, random phages were attached, and selected by 7 times of biopanning. Individual DNA sequences were analyzed for each biopanning to find specific peptide sequences for VDBP-Complex. The affinity of binding phages was verified by ELISA assay using an anti-M13 antibody. The phage having a sequence of SFTKTSTFTWRD (called as M3) has shown the highest binding affinity to VDBP-Complex. As a result of the removal test of VDBP-Complex using magnetic beads conjugated with M3 peptide, it was confirmed that significant decrease of VDBP-Complex. The unique characteristic of the M3 sequence was confirmed through a sequence-modified peptide (SFT motif). That is, it is expected that the M3 peptide may be used to determine the vitamin D levels in the blood.


Assuntos
Bacteriófagos , Vitamina D , Peptídeos/metabolismo , Vitaminas , Proteína de Ligação a Vitamina D , Técnicas de Visualização da Superfície Celular/métodos , Ensaio de Imunoadsorção Enzimática , Bacteriófagos/metabolismo
11.
Biosens Bioelectron ; 222: 114909, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462427

RESUMO

Antibody phage display, aimed at preparing antibodies to defined antigens, is a useful replacement for hybridoma technology. The phage system replaces all work stages that follow animal immunization with simple procedures for manipulating DNA and bacteria. It enables the time needed to generate stable antibody-producing clones to be shortened considerably, making the process noticeably cheaper. Antibodies prepared by phage display undergo several affinity selection steps and can be used as selective receptors in biosensors. This article briefly describes the techniques used in the making of phage antibodies to various antigens. The possibilities and prospects are discussed of using phage antibodies as selective agents in analytical systems, including biosensors.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Animais , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos , Proteínas Recombinantes/genética , Antígenos , Bacteriófagos/genética
12.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955604

RESUMO

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos Monoclonais , Bacteriófagos/genética , Bioprospecção , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana
13.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955688

RESUMO

For the treatment of inflammatory illnesses such as rheumatoid arthritis and carditis, as well as cancer, several anti-inflammatory medications have been created over the years to lower the concentrations of inflammatory mediators in the body. Peptides are a class of medication with the advantages of weak immunogenicity and strong activity, and the phage display technique is an effective method for screening various therapeutic peptides, with a high affinity and selectivity, including anti-inflammation peptides. It enables the selection of high-affinity target-binding peptides from a complex pool of billions of peptides displayed on phages in a combinatorial library. In this review, we will discuss the regular process of using phage display technology to screen therapeutic peptides, and the peptides screened for anti-inflammation properties in recent years according to the target. We will describe how these peptides were screened and how they worked in vitro and in vivo. We will also discuss the current challenges and future outlook of using phage display to obtain anti-inflammatory therapeutic peptides.


Assuntos
Bacteriófagos , Técnicas de Visualização da Superfície Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Técnicas de Visualização da Superfície Celular/métodos , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Ligação Proteica , Tecnologia
14.
Theranostics ; 12(5): 2041-2062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265198

RESUMO

Alzheimer's disease (AD) is an incurable and fatal progressive neurodegenerative disorder associated with memory and cognition impairment. AD is one of the top medical care concerns across the world with a projected economic burden of $2 trillion by 2030. To date, however, there remains no effective disease-modifying therapy available. It is more important than ever to reveal novel therapeutic approaches. Peptide-based biotherapeutics has been a great potential strategy attributed to their distinct and superior biochemical characteristics, such as reproducible chemical synthesis and modification, rapid cell and tissue permeability, and fast blood clearance. Phage display, one of today's most powerful platforms, allows selection and identification of suitable peptide drug candidates with high affinities and specificity toward target, demonstrating the potential to overcome challenges and limitations in AD diagnosis/treatment. We aim to provide the first comprehensive review to summarize the status in this research direction. The biological overview of phage display is described, including basic biology of the phage vectors and construction principle of phage library, biopanning procedure, mirror image phage display, and various binding affinity evaluation approaches. Further, the applications of phage display in AD therapy, targeted drug delivery, and early detection are presented. Finally, we discuss the current challenges and offer a future outlook for further advancing the potential application of phage display on AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Bacteriófagos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Técnicas de Visualização da Superfície Celular/métodos , Humanos , Biblioteca de Peptídeos , Peptídeos/metabolismo
15.
Int J Biol Macromol ; 208: 421-442, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35339499

RESUMO

Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos/uso terapêutico , Bactérias , Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular/métodos , Saccharomyces cerevisiae
16.
Toxins (Basel) ; 14(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202182

RESUMO

The venomous species Deinagkistrodon acutus has been used as anti-inflammatory medicine in China for a long time. It has been proven to have anti-inflammatory activity, but its specific anti-inflammatory components have not yet been fully elucidated. Tumor necrosis factor receptor-1 (TNFR1), which participates in important intracellular signaling pathways, mediates apoptosis, and functions as a regulator of inflammation, is often used as the target to develop anti-inflammatory drugs. The small peptides of snake venom have the advantages of weak immunogenicity and strong activity. To obtain the specific TNFR1 binding peptides, we constructed a T7 phage library of D. acutus venom glands, and then performed biopanning against TNFR1 on the constructed library. After biopanning three times, several sequences with potential binding capacity were obtained and one 41-amino acid peptide was selected through a series of biological analyses including sequence length, solubility, and simulated affinity, named DAvp-1. After synthesis, the binding capacity of DAvp-1 and TNFR1 was verified using surface plasmon resonance technology (SPR). Conclusively, by applying phage display technology, this work depicts the successful screening of a promising peptide DAvp-1 from D. acutus venom that binds to TNFR1. Additionally, our study emphasizes the usefulness of phage display technology for studies on screening natural product components.


Assuntos
Anti-Inflamatórios/análise , Técnicas de Visualização da Superfície Celular/métodos , Biblioteca de Peptídeos , Receptores Tipo I de Fatores de Necrose Tumoral/análise , Proteínas Recombinantes de Fusão/análise , Venenos de Serpentes/química , Viperidae , Animais , China
17.
Sci Rep ; 12(1): 2288, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145147

RESUMO

Dirofilaria repens is a parasitic nematode causing vector-borne disease (dirofilariasis), considered an emerging problem in veterinary and human medicine. Although main hosts are carnivores, particularly dogs, D. repens shows high zoonotic potential. The disease spreads uncontrollably, affecting new areas. Since there is no vaccine against dirofilariasis, the only way to limit disease transmission is an early diagnosis. Currently, diagnosis depends on the detection of microfilariae in the host bloodstream using modified Knott's test or multiplex PCR. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable diagnostic test is required. Our study aimed to select new diagnostic markers for dirofilariasis with potential application in diagnostics. We focused on single epitopes to ensure high specificity of diagnosis and avoid cross-reactivity with the other parasite infections common in dogs. Using phage display technology and 12-mer peptides library, we selected epitopes highly reactive with IgG from sera of infected dogs. Additionally, our study presents the possibility of detecting D. repens specific cell-free DNA in dogs with no microfilaria but high IgG and IgM antibody levels against parasite somatic antigen.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , DNA de Helmintos/sangue , Dirofilaria repens/genética , Dirofilaria repens/isolamento & purificação , Dirofilariose/diagnóstico , Doenças do Cão/diagnóstico , Animais , Biomarcadores/sangue , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Cães , Imunoglobulina G/sangue
18.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215976

RESUMO

The evolution of the SARS-CoV-2 virus during the COVID-19 pandemic was accompanied by the emergence of new heavily mutated viral variants with increased infectivity and/or resistance to detection by the human immune system. To respond to the urgent need for advanced methods and materials to empower a better understanding of the mechanisms of virus's adaptation to human host cells and to the immuno-resistant human population, we suggested using recombinant filamentous bacteriophages, displaying on their surface foreign peptides termed "mimotopes", which mimic the structure of viral receptor-binding sites on the viral spike protein and can serve as molecular probes in the evaluation of molecular mechanisms of virus infectivity. In opposition to spike-binding antibodies that are commonly used in studying the interaction of the ACE2 receptor with SARS-CoV-2 variants in vitro, phage spike mimotopes targeted to other cellular receptors would allow discovery of their role in viral infection in vivo using cell culture, tissue, organs, or the whole organism. Phage mimotopes of the SARS-CoV-2 Spike S1 protein have been developed using a combination of phage display and molecular mimicry concepts, termed here "phage mimicry", supported by bioinformatics methods. The key elements of the phage mimicry concept include: (1) preparation of a collection of p8-type (landscape) phages, which interact with authentic active receptors of live human cells, presumably mimicking the binding interactions of human coronaviruses such as SARS-CoV-2 and its variants; (2) discovery of closely related amino acid clusters with similar 3D structural motifs on the surface of natural ligands (FGF1 and NRP1), of the model receptor of interest FGFR and the S1 spike protein; and (3) an ELISA analysis of the interaction between candidate phage mimotopes with FGFR3 (a potential alternative receptor) in comparison with ACE2 (the authentic receptor).


Assuntos
Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular/métodos , Mimetismo Molecular , Receptores de Superfície Celular/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Bacteriófagos/metabolismo , Sítios de Ligação , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
19.
Methods Mol Biol ; 2446: 245-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157277

RESUMO

Binding affinity is one of the primary determinants of antibody function. Here, we provide a protocol for simple and rapid affinity maturation of single-domain antibodies (sdAbs) using tandem phage display selection and next-generation DNA sequencing. The sequence of a model camelid sdAb directed against Clostridioides difficile toxin A (A26.8) was diversified using either random or site-saturation mutagenesis and cloned into a phagemid vector upstream of gene 3. The resulting phage-displayed sdAb libraries were panned against C. difficile toxin A and the panning outputs interrogated using Illumina MiSeq sequencing. Through bioinformatic analyses, we were able to identify individual affinity-enhancing amino acid substitutions in the sdAb complementarity-determining regions that, when combined, resulted in affinity improvements of approximately 10-fold. The advantages of this method are that it does not require extensive screening and characterization of individual clones, nor structural information on the mechanism of the sdAb:antigen interaction.


Assuntos
Clostridioides difficile , Anticorpos de Domínio Único , Afinidade de Anticorpos , Técnicas de Visualização da Superfície Celular/métodos , Clostridioides difficile/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biblioteca de Peptídeos , Análise de Sequência de DNA , Anticorpos de Domínio Único/química
20.
Sci Rep ; 11(1): 22098, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764369

RESUMO

Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Mamíferos/imunologia , Ligação Proteica/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Células HEK293 , Células HeLa , Humanos , Células K562 , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...